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Abstract We present a projection based multiscale optimization method for eigen-
value problems. In multiscale optimization, optimization steps using approximations
at a coarse scale alternate with corrections by occasional calculations at a finer scale.
We study an example in the context of electronic structure optimization. Theoretical
analysis and numerical experiments provide estimates of the expected efficiency and
guidelines for parameter selection.

Keywords Reduced-order modeling · Approximation optimization · Multiscale
optimization · Galerkin projection

1 Introduction

Casting design in science and engineering as global optimization presents a tantalizing
prospect; we can formulate designs as optimizations, we have the tools to perform
the computations, but the computational complexity makes the solution of the opti-
mization problems intractable. Our work is a step toward solution of this problem.
To solve large global optimization problems involving expensive objective functions
and large search spaces, we apply the following general method: Given a potential
solution, derive a reduced-order approximation of the objective function at a larger
scale, or, equivalently, in a smaller space. Using this approximation, perform some
number of optimization steps in the computationally more tractable setting of the
larger scale/smaller space. Now calculate the objective function of the improved solu-
tion once more with high accuracy, enabling a new approximation to be derived that
is better in the region of the current best solution. Repeat this process until satisfied.
This method is a marriage of two techniques, reduced-order modeling and global
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optimization. Alone, they fail in the face of large problems. Together, each compen-
sates for the shortcomings of the other.

Uses of approximation in optimization are not uncommon within the context of
traditional mathematical programming [19]. Examples with a true multiscale flavor—
including approximations and ongoing correction of approximations—are more rare,
but include: use of proper orthogonal decomposition to derive reduced-order models
in flow control problems [15]; “sequential reduced system programming” in the con-
text of global climate models [9]; multigrid based optimization schemes for nonlinear
programming [8] and VLSI layout [14]; refinement of approximations during search
based on balance between quality of approximation and success of optimization [18];
optimization of model reduction for ordinary differential equations [7].

The most important concept in this paper is the repeated regeneration and use
of approximations as an optimization progresses. The most concrete contribution is
the development of the technical machinery necessary to implement this concept for
optimization problems whose objective functions involve eigenvalue problems.

In Sect. 2 we describe our projection based multiscale optimization method. In
Sect. 3 we describe a physical problem of interest and the application of our method
to it. In Sect. 4 we present analysis and numerical studies aimed at understanding and
tuning the method for maximum effectiveness.

2 Method

Here we describe the projection based optimization method for eigenvalue problems.
We begin by stating the type of problem to which we apply our method. We then
present the important notions of choosing and projecting onto a subspace. Next we
describe the search method employed. We then present the overall projection based
multiscale algorithm.

We consider problems of the form

max
ξ∈D

F(ξ),

where evaluation of F(ξ) involves solution of an eigenvalue problem

A(ξ)v = λv,

where v ∈ RN , and A is an N-by-N matrix. The search domain D we deliberately
leave rather abstract; our method works as well for constrained as for unconstrained
problems, and there is no assumption that ξ is a vector in any particular space (in our
application below, it is a binary string). We assume that A = A(ξ) depends on the free
variables ξ and that F is, for example, a function F({v}, {λ}) of the eigenvalues and
eigenvectors of A. The dependence of A (and thus F) on ξ may be highly indirect.
For example, in Sect. 3 an atomic configuration ξ determines the potential energy V,
which contributes to the Hamiltonian H, whose discretization is A.

For large N, the eigenvalue problem is an expensive calculation we wish to perform
as infrequently as possible. Therefore, we will apply the following approach: Given
ξ , we solve A(ξ)v = λv with high accuracy (throughout, “high accuracy” will refer
to solving an equation in RN). From the results of this calculation, given M < N,
we choose an M dimensional subspace P ⊂ RN upon which we will “project” our
eigenvalue problem. The subspace P is meant to be a good approximation, in the
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neighborhood of ξ , of the part of the spectrum of A(ξ) from which F is computed.
That is, using a calculation only at ξ , we choose P such that for all ξ ′ near ξ , the
eigenvectors (and thus the eigenvalues) of interest of A(ξ ′) are well approximated by
vectors in the subspace P.

The choice of P is problem specific; the important part of the spectrum for comput-
ing F obviously depends on F. For definiteness, in the case considered in this paper, P
is chosen as follows: For a given ξ , find the M eigenvectors v of A(ξ)whose eigenvalues
are closest to a given reference eigenvalue λref that defines the part of the eigenvalue
spectrum in which we are interested (for us this will be the center of the “band gap”
in the spectrum; see Sect. 3). Let P be the N-by-M matrix whose columns are those
M eigenvectors. Such a P always exists in our case because the matrix A is symmetric
(see below) so there exists a basis of eigenvectors. (Construction of P in the case that
A is not diagonalizable will not be considered here.) We use “P” to refer to both the
matrix and the subspace it represents (the columns of the matrix form a basis of the
subspace), and we may write P(ξ) to emphasize the dependence of P on ξ .

By evaluating the objective function F(ξ) “in the space P,” we mean the follow-
ing: Instead of evaluating F(ξ), we evaluate an approximate function F̂ given by the
approximate eigenvalues as calculated in P. To do so, we form the Galerkin projection
[5] onto P, defined as follows. Let the M-vector w be the coordinates with respect to P
of a solution of the projected eigenproblem, and let its corresponding eigenvalue be
µ. This vector can be written Pw. The Galerkin projection onto P of the eigenvalue
problem Av = λv is defined by the condition that the residual A(Pw) − µ(Pw) is
orthogonal to P. That is,

PT(APw − µPw) = 0.

Because the columns of P are orthonormal, this becomes

PTAPw = µw.

Thus the approximate matrix whose eigenvalues we will use to calculate F is given by

Â(ξ) = PTA(ξ)P.

Â(ξ) is, importantly, an M-by-M matrix. Thus we can compute the eigenvalues of
Â much more quickly than those of A. F̂ is defined to be the same function of the
eigenvectors and eigenvalues of Â as F is of A. That is, to evaluate F̂(ξ), we solve

Âw = µw,

and let F̂(ξ) = F({Pw}, {µ}). We present an explicit example in Sect. 3.
The subspace size M is a critical parameter to the method. If it is too near N, we

do not gain much efficiency. If it is too small, F̂ is not close enough to F to perform
effective optimization. This issue is explored in Sect. 4.

We will couple this notion of Galerkin projection with a global optimization
method. Though we could use a variety of methods, we will use simulated anneal-
ing [4] here. This iterative method consists of a search in which starting from some ξ0,
ξk+1 is derived from ξk as follows: a test solution ξk+1 is formed from ξk in a problem
specific way (see below, for example, where the new test solution is formed from the
current one by randomly swapping two atoms), and the new solution is accepted with
probability
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Fig. 1 The projection based multiscale eigenvalue optimization algorithm. Note the structure: an
inner “optimization” loop (lines 6 through 11) nested within an outer “subspace refinement” loop
(lines 2 through 13)

{
1 if F(ξk+1) > F(ξk),
e−(F(ξk)−F(ξk+1))/T otherwise.

T, the “temperature,” is a parameter that is slowly “cooled” to zero during the course
of an optimization. The value of T determines the balance between global and local
search.

With these ingredients in hand, we can now state our algorithm. Projection based
multiscale optimization for eigenvalue problems consists of two levels of iteration, an
inner “optimization” loop contained within an outer “subspace refinement” loop, and
proceeds as follows: Given the parameters N, M, m, and an initial ξ0, we first form P
as described above. Now, for k = 0, 1, . . ., we let ξ0

k = ξk and perform m optimization
steps using the objective function F̂, the projection of F onto P, searching through
configurations ξ j

k, for 1 ≤ j ≤ m, using simulated annealing. This is the inner “opti-

mization” loop. As ξ j
k diverges from ξ0

k , the quality of our approximation degrades.
Therefore, after m inner iterations, we let ξk+1 = ξm

k , then reform P from ξk+1 by
solving A(ξk+1)v = λv with high accuracy. This forms the outer “subspace refinement”
loop. We repeat both loops until satisfied with our solution.

Note that it is the repeated recalculation of the subspace P that gives the method
its power. Approximation in optimization can be useful [17,19], but its effective-
ness is limited by the tendency of approximations to only be valid in a small part of
the search domain. Here we explicitly address this limitation by continually adjust-
ing the space P, thus the approximation F̂, to reflect the current status of the
search.

Figure 1 illustrates the algorithm. In the next section we present a physical example.
In Sect. 4 we study the choice of m and M.

3 Example

Eigenvalue optimization problems are at the heart of attempts to design semicon-
ductor materials with specific electronic properties. In particular, we now explore
our method within the context of an extended Kronig–Penney model [12]. This test
application is a first step toward problems of practical interest.
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Fig. 2 The atomic identities
(“A” or “B”) and potential
along the one dimensional
model lattice for a particular
atomic configuration σ
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Recent advances in the field of electronic structure calculation [1,10,20] have led
to attempts to automatically design materials with desired properties by casting the
entire process as a global optimization problem [2,6,11]. In such a formulation we
solve a problem of the form

max F(σ ),

where the free variable σ represents a configuration of atoms and F(σ ) is the elec-
tronic property of interest such as semiconductor band gap. Although successful in
limited settings, this approach founders on the complexity of the computations as
the number of atoms in σ grows. Our method is targeted toward application to such
problems.

Consider a one-dimensional lattice of atoms of type “A” and “B” represented by a
vector σ . The electronic energy eigenstates of a configuration σ are found by solving
the Schrödinger equation

Hψ = εψ ,

where

H = −∇2 + V(x).

(Throughout this paper we assume all physical constants are set to unity.) V(x) is
the potential energy. In our model it is a square wave whose height is determined
by which atom, A or B, lies nearest to x. This amounts to an extension of the classic
Kronig–Penney model, in which all the atoms were of only one type. Note that H
depends on σ through V = V(σ ). Figure 2 illustrates a particular configuration σ
and its potential V(σ ). We assume periodic boundary conditions throughout, so the
structure is assumed to repeat infinitely along the line.

To solve this equation, we discretize the domain into N grids of size h. The eigen-
function ψ becomes an N-dimensional vector, and the operator H is represented by
an N-by-N matrix we will also call H. For our problem H has a particularly simple
form. With periodic boundary conditions, a first-order discretization of the second
derivative, and Vi ≡ V(xi) ≡ V(i ∗ h), we may write
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then solve the resulting eigenproblem.
The spectrum of such a matrix has bands of eigenvalues separated by a band gap

[12]. The band gap of the material is derived by subtracting the lowest eigenvalue
above the band gap from the highest eigenvalue below the band gap (typically we
know approximately where the band gap is, so it is not difficult to identify these
states). It is of practical interest to control this gap. Therefore, our prototypical design
problem is to find the arrangement of A and B atoms that maximizes the band
gap.

This problem is of the form presented in Sect. 2, with the discretized H as the matrix
A, and F defined to be the difference between the two eigenvalues above and below
the band gap. We begin with a random atomic configuration σ of a certain composition
(number of “A” versus “B” atoms), and the parameters N, M, m, and εref . We solve
H(σ )ψ = ε� as describe above, on a grid of size N, and let P be the M eigenvectors
whose eigenvalues are closest to εref . We now take m search steps “in P,” that is, by
approximating the band gap F computed from H by the approximate band gap F̂
computed from Ĥ = PTHP. After these m steps, the resulting new configuration σ is
used to generate a new P, and we repeat the process as long as desired.

Figure 3 shows a comparison between optimizations for a 20 atom problem with
and without multiscale approximation. The figure shows the mean optimization paths
for a set of five runs, with five different random seeds. The average time to reach the
maximum for M = 30 was 0.966 s. Without approximation, it was 4.512 s, a factor of
five efficiency gain.

Fig. 3 Results and
comparison of optimization of
the extended Kronig–Penney
model with and without
approximation. The band gap
units are arbitrary. The results
are for a 20-atom system.
N = 100, M = 30, and m = 20.
The observed time reduction
factor is 0.20. Our underlying
solver has computational
complexity O(N3), so the
lower bound on the time
reduction is approximately
(N3 + MN2 + m(M3 +
M2N))/(mN3) = 0.18, as
discussed in Sect. 4.1. The inset
shows the optimal
configuration and its potential
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Fig. 4 Comparison of different choices of the size M of the subspace P. For each value we have
plotted the mean path of 5 runs from different initial conditions for the best value of m obtained from
a scan of values from m = 1–50

As a first step toward scaling the algorithm to realistic problems, we have run the
one-dimensional model on problems with up to 80 atoms. In all cases the multiscale
algorithm increases the efficiency of the search by roughly a factor of two or more.

To apply this method to a problem of practical interest will require specialized
implementation of the ingredients of the algorithm described in Sect. 2. For efficiency,
an electronic structure code able to compute only the M eigenvalues in a certain
“energy window” near the reference energy should be utilized; such codes exist [1].
This will allow us to efficienty compute the subspace P we use for approximation.
To implement the projection Ĥ = PTHP of the Hamiltonian, however, will require
customization of the electronic structure program. In particular, such codes do not
store H as a matrix but simply implement the matrix-vector product Hψ . We will
have to reimplement this part of the code to instead compute PTHPψ . Such work is
beyond the scope of the current paper.

4 Analysis

To begin our study of the method, consider Fig. 4. Here we have run optimizations
from five random seeds for a variety of values of subspace size M and inner optimi-
zation iterations m. For each M, the plot shows the band gap’s mean path (over the
five seeds) for the value of m with the best performance. As expected, we observe
increased efficiency as M decreases until a point where the subspace is too small for
our approximations to be accurate enough to perform effective search. We pursue
this situation in more detail for the rest of this section.

Analysis of global optimization methods is inherently problematic, but in our case
it is made more difficult by the balance between the efficiency gain due to approx-
imate (hence faster) objective function evaluation and the fact that error due to
approximation can lead to search steps “in the wrong direction.” We consider each of
these issues in turn.
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4.1 Complexity

Assume that we are using an eigensolver such as QR-iteration that has computa-
tional complexity of O(N3) [3,16]. (Our example, of course, has a very special form
that would admit of specialized, more efficient solution, but we are interested in the
general case.) In this case, the computational cost of forming the subspace of eigen-
vectors P is O(N3). Naively, the cost of forming the approximation Ĥ(σ ) = PTHP
for a subsequent σ is O(M2N + MN2). However, we can do better by separating the
generation of the projection of the momentum term of H, i.e., the discretization of
∇2, which does not depend on σ , from that of the potential term, which does depend
on σ . In this case, we incur an additional O(MN2) cost when we generate P, but
subsequent computation of Ĥ(σ ) only requires O(M2N) operations. The solution of
the M-dimensional eigenproblem for Ĥ is O(M3). So one total outer iteration, which
includes generation of P and m optimization steps, requires

O(N3)+ O(MN2)+ m[O(M3)+ O(M2N)],
operations.

Now, if we do not approximate, the same number of optimization steps requires
mO(N3) operations. So the relative efficiency, per optimization step, is

N3 + MN2 + m(M3 + M2N)
mN3 .

If m is large, this reduces to ∼ mM2N/mN3 = M2/N2. For our runs, typical numbers
are N = 100, M = 30, m = 20, which results in operation count ratios of ∼ 0.18. This
number represents a lower bound on the time reduction attributable to the multiscale
approach. We can only expect to approach this bound if our approximation is good
enough that we do not require extra search steps. We now consider this issue.

4.2 Optimal choice of parameters

The cost per iteration is only one part of the total cost of the search. The other ingredi-
ent is the total number of iterations necessary. We expect that as the cost per iteration
goes down (by decreasing M), the total number of iterations goes up (because of
increasing error due to approximation). What is the optimal tradeoff?

Because we have no way of directly calculating how many search steps are nec-
essary, we reason as follows: The decisions to accept or reject a move are based on
comparisons between two values that may be in error. The larger this error, the more
likely it is that our steps are incorrect. Thus we assume our question of how many
steps are necessary, or, more precisely, the change in the number of steps with and
without approximation, can be reduced to the question of objective function error as
a function of different choices of subspace size M and inner iterations m.

Let h be the “Hamming distance” between two configurations:

h ≡ ||σ2 − σ1||H
≡ the number of atomic sites at which σ1 and σ2 differ.

Consider Fig. 5, where we show the dependence of the band gap error |F(σ2)− F̂(σ2)|
on M and h. Note that F̂(σ2) is the approximation computed in a space P = P(σ1) for
some σ1 	= σ2. This graph has an intriguing shape. First, it is highly nonlinear; we have
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Fig. 5 Eigenvalue error versus
degree of approximation (size
of subspace M) and Hamming
distance h from solution that
generated the subspace in
which we are computing. The
performance of the algorithm
(see Fig. 4) is highly correlated
with this error
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no theoretical explanation for it. Second, and more practically, it has a plateau of rel-
atively low error (the actual band gaps are ∼ 40) for a wide range of M, roughly 30 <
M < 70. And there is some, but weaker, dependence on h, which is a reflection of m.
We may interpret these data as suggesting that for 30 < M < 70, the optimization steps
we take are equally effective. Thus we should use an M at the low end of this range.

Furthermore, the relatively insignificant dependence of approximation error on m
suggests we should use a large value; in this way we increase the ratio of inexpensive
inner iterations to expensive outer iterations with little cost in accuracy. These data
support the intuition based on both the basic principle of the method, and on Fig. 4,
where we find M = 30 to be optimal, and a wide range of rather large values of m to
be the best.

That is, in Fig. 4, we observe a point near M = 30 below which reliability of the
search plummets. This is the same point below which the band gap error is seen to
increase dramatically in Fig. 5. This suggests a strong correlation between eigenvalue
error and the success of the search, supporting the above assumption that the number
of search steps was roughly proportional to the error. Furthermore, within the range of
M in which the band gap error is small, we can assume our search steps are reliable; thus
in this range the complexity estimates in Sect. 4.1 should accurately assess the expected
efficiency gain of the method. This is indeed the case, as both the theoretical complex-
ity estimate and actual data give an approximately 5-fold reduction in search time.

To suggest analytically where these results come from, consider the configurations
σ1, with corresponding Hamiltonian H1, from which we have generated our subspace
P1, and σ2, with Hamiltonian H2 and subspace P2 we would generate if we solved
H2 with high accuracy. Assume it is σ2 whose approximate eigenvalues we are now
computing by projecting onto P1. If we were to project perfectly onto the eigenvectors
corresponding to the “first” (in sense of proximity to εref ) eigenvalues of H2, we would

solve for H(2)
2 = PT

2 H2P2. Instead we solve for H(1)
2 = PT

1 H2P1. H(2)
2 is a diagonal

matrix D2 of the closest eigenvalues of H2 to εref . Similarly, H(1)
1 is a diagonal matrix

D1 of the closest eigenvalues of H1 to εref . Now, consider H2 as a perturbation of
H1. The discretization of the momentum operator does not change. And the potential
term V, which is always diagonal in our real-space discretization, changes by some
amount dV(σ1, σ2) only to reflect some number of atom swaps. Then what we compute
is (for this equation let P ≡ P1, and let us address the elements of the matrix P as Pij)
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PTH2P = PTH1P + PTH2P − PTH1P

= D1 + PT(H2 − H1)P

= D1 + PTdVP

= D1 +
[∑

l

PilPjldVll

]
, (1)

where we have used the fact that dV is diagonal, and the notation “[aij]” means the
matrix whose i, jth element is aij. This equation allows us to see how M and m affect
what we compute. The Hamming distance, which is a function of m, enters only dV,
whereas the size of the subspace M enters only in P. As M → N, P becomes a change
of coordinates in RN . As h → 0, dV → 0. In either limit our projected computation
becomes equal to the highly accurate one. On the other hand, suppose M = 1. In this
case PTH2P is an estimate of a single eigenvalue due to the perturbation dV, and
Eq. (1) is just the result of first-order time-independent perturbation theory of quan-
tum mechanics [13].

Using the results in [16], estimates of the eigenvalue error in terms of the norms of
P1, P2, and H2 may be established, but they are far from sharp, so we will not pursue
them here. It is an open problem to discover sharp bounds on the eigenvalue error of
a projection based on the subspace size.

Note, though, that even in the absence of sharp theoretical error estimates, the
selection of the critical subspace size parameter M can be automated. We can simply
perform sample calculations for a variety of M to find the point at which the approx-
imation error grows large. Now choose M just above this threshold. This procedure
is not computationally prohibitive because the algorithm already involves occasional
highly accurate calculations, so a few more calculations to start the run will not dom-
inate the overall cost. Also, this procedure will be effective, as the evidence suggests
that the threshold M is relatively independent of the configuration σ used to generate
P, thus independent of the σ we could use to establish M.

Interestingly, it may be possible that we can tolerate considerable error within a
simulated annealing optimization, because such error acts like raising the temper-
ature (it increases the likelihood of a new solution being accepted even though its
objective function value is worse than the previous solution). This suggests that as the
optimization progresses we could adjust M just as we adjust T. Such considerations,
however, are beyond the scope of the current paper.

5 Conclusion

We have presented the multiscale optimization concept in which optimization steps
in a small space are alternated with approximation refinement steps in a larger space.
We have explained in detail a novel algorithm for the application of this concept to
eigenvalue optimizations. The technique has been illustrated for an extended Kronig–
Penney model in which we solve the problem of finding the configuration of atoms that
maximizes the electronic band gap. The utility of the method has been demonstrated
by comparison with optimization in the absence of approximation. The crucial param-
eters of subspace size M and number of optimization steps per refinement step m
have been studied. We discover that search performance is highly correlated with
band gap error. In the regime of small error—hence reliable search steps—we see
steady improvement as M decreases. Below a certain threshold M where the error
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due to approximation increases precipitously we observe the concomitant failure of
the search. Potential applications of this method to computational materials science
abound. In particular, we believe a multiscale approach will be an essential ingredient
in the complex problem of optimizing structures for nanoscale applications.
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